Stellar parameters from Gaia

Ulrike Heiter and Gaia DPAC CU8

Uppsala universitet

24 May 2016

Outline

- Overview of CU8 data and processing
- Expected performance for stellar parameter estimation
- Validation and Calibration
- Stellar parameters in Gaia data releases

Classification and parameters from Gaia data

- Source classification
 - assign probabilities for belonging to different classes: star, binary, quasar, galaxy, ...
 - based on spectrophotometry (BP/RP), RVS spectra, colours, astrometry
- Astrophysical parameter (AP) estimation
 - for single and binary stars, quasars, and galaxies
 - based on spectrophotometry (BP/RP), RVS spectra, and parallax (for stars)
- Use of various libraries of synthetic spectra (plus calibration against standards)
- Novelty detection (outlier analysis)
- Described in Bailer-Jones et al. 2013, A&A 559, A74, and Recio-Blanco et al. 2016, A&A 585, A93

Gaia spectroscopy

Overview Expected performance Calibration Gaia data releases

Graphics: ESA, Astrium

Simulated spectrophotometry (BP/RP)

Simulated spectrophotometry (BP/RP)

Simulated spectrophotometry (BP/RP)

Observed uncalibrated BP/RP spectra

Graphics: ESA/DPAC/Astrium/ C. Jordi & J.-M. Carrasco

Overview Expected performance Calibration Gaia data releases

Simulated RVS spectra

Observed early RVS spectrum

Overview Expected performance Calibration Gaia data releases

Gaia DPAC data flow

APs inference system (Apsis) in Gaia

Discrete Source Classifier – preliminary performance

Bailer-Jones et al. (2013), Table 3

-

	DSC output class [%]				
Library	Star	WD	Binary	Quasar	Galaxy
Phoenix	92	_	7	_	1
Phoenix– <i>R</i> 0	90	3	7	_	_
A stars	80	_	20	_	0.1
OB stars	95	1	4	_	_
WD	17	79	4	_	_
UCDs	97	_	1	2	_
Binary stars	18	_	82	_	_
SDSS stars	94	_	6	_	_
SDSS quasars	6	3	0.1	78	13
SDSS galaxies	2	_	0.5	_	98

rows are true classes (spectral libraries) dash means exactly zero

GSP-Phot/Aeneas algorithm – preliminary performance

- is a function of true parameters, magnitude, number of observations
- internal RMS residuals for FGKM stars (wide range of other APs), using BP/RP and parallaxes

Bailer-Jones et al. (2013), Table 4					
AP	G=15	G=19			
$T_{\rm eff}/$ K	70 – 170	90 - 630			
A_0/mag	${\sim}0.1$	0.1 – 0.4			
[Fe/H]/ dex	0.2 – 0.3	0.3 – 0.7			
log g/ dex	0.2 – 0.4	0.2 – 0.5			

GSP-Spec - expected performance for K giants

Overview Expected performance Calibration Gaia data releases

Recio-Blanco et al. (2016)

GSP-Spec – expected performance for late-type stars

- internal precision based on simulations with R = 11200
- surface gravity is most difficult to estimate, but dwarfs and giants will be distinguishable at all magnitudes
- stars brighter than G_{RVS}~12.5 (S/N= 20) will be well parametrized, including good estimations of [α/Fe]
- \blacktriangleright individual chemical abundances for stars with $G_{RVS} {\lesssim}$ 12 (S/N ${\gtrsim}$ 35) to ${\sim}0.1$ dex
- faintest stars will be better parametrized by GSP-Phot

Ongoing developments: validation and calibration

Validation

– Purpose:

to verify accurate calibration of upstream data products and to recognise problems in software/models

- Procedure:

internal – distribution and correlation of APs and comparison between different Apsis modules, *external* – comparison of APs with non-Gaia estimates

Calibration

- Purpose:

to account for mismatch between models and reality and to put Apsis stellar APs onto "useful" system

- Procedure:

either *data-side calibration* – modify input synthetic grids, or *AP-side calibration* – correct output APs, to give AP estimates consistent with calibration stars

APs in the Gaia data releases

- Gaia-DR1 (end of summer 2016): nothing planned
- Gaia-DR2 (end of summer 2017): *T*_{eff}, and maybe *A*₀, *L*, *R* for *TGAS stars*; based on integrated BP/RP from Gaia-DR1
- Gaia-DR3 (2018?): main APs based on BP/RP and RVS; BP/RP and RVS data
- Gaia-DR4 (2019?): as Gaia-DR3 but with improved precision and calibration; more detailed APs
- Final release (~2022): improvement of all data products; ground-based auxiliary data

Stellar APs in final Gaia catalogue

- class probabilities (single star, binary, WD, etc.)
- T_{eff} , A_0 , log g, [Fe/H], [α /Fe], (R_0 , abundances)
 - use of parallax and priors (e.g. HRD) in some cases
 - multiple sets of estimates (different methods, data, libraries)
 - derived luminosity, mass, radius, age (variable precision)
 - uncertainty estimates, posterior PDF in some cases
- additional AP estimates
 - emission line star classes
 - rotation and activity indicators for cool stars
 - refined APs for hot stars and ultra cool dwarfs
 - brightness ratio for binaries

Summary

- The Gaia catalogue will contain
 - discrete classifications
 - star, galaxy, quasar parameters
 - novelty detection, 2D extinction map
 - multiple parameter estimates: different methods/data/libraries

Large numbers of objects with APs of variable precision

- 10⁹ objects with G < 20 from low res. spectrophotometry over 330–1050 nm
- -10^7 stars with $G_{RVS} \lesssim$ 12.5 from high res. spectroscopy over 847–871 nm
- performance overview:

```
http://www.cosmos.esa.int/web/gaia/
science-performance
```