The ESTER project: modelling fast rotating stars

Michel Rieutord

Institut de Recherche en Astrophysique et Planétologie, Toulouse, France

PLATO meeting 24-25 mai 2016

・ロト ・ 同ト ・ ヨト ・ ヨト

Why should we make 2D-models?

To deal properly with rotation !

Rotation means

- non spherical stars
- baroclinic flows in radiative region
- anisotropic convection

We note that

- 1D rotating models are valid when $\Omega \rightarrow 0$
- A lot of physics is condensed inside adjustable (transport) coefficients
- 1D models are not usable in asteroseismology of rapid rotators
- New data from optical/IR interferometry require a 2D view...

< ロト < 同ト < ヨト < ヨト

Why should we make 2D-models?

To deal properly with rotation !

Rotation means

- non spherical stars
- baroclinic flows in radiative region
- anisotropic convection

We note that

- 1D rotating models are valid when $\Omega \to 0$
- A lot of physics is condensed inside adjustable (transport) coefficients
- 1D models are not usable in asteroseismology of rapid rotators
- New data from optical/IR interferometry require a 2D view...

< ロト < 同ト < ヨト < ヨト

Interferometry : Achernar

FIGURE : Achernar with VLTI (Domiciano de Souza et al. 2014, AA 569)

<ロト < 部ト < 三

Interferometry : Altair

FIGURE : Altair seen by CHARA (Monnier et al. 2007).

イロト イヨト イヨト イヨト

• We consider a lonely rotating star

- We are interested in long time-scales
- We discard all magnetic fields.

• □ ▶ • □ ▶ • □ ▶ • •

- We consider a lonely rotating star
- We are interested in long time-scales
- We discard all magnetic fields.

イロト イヨト イミト イ

- We consider a lonely rotating star
- We are interested in long time-scales
- We discard all magnetic fields.

$$\begin{aligned}
\Delta \phi &= 4\pi G\rho \\
\rho T \vec{v} \cdot \vec{\nabla} S &= -\text{Div} \vec{F} + \varepsilon_* \\
\rho (2 \vec{\Omega}_* \wedge \vec{v} + \vec{v} \cdot \vec{\nabla} \vec{v}) &= -\vec{\nabla} P - \rho \vec{\nabla} (\phi - \frac{1}{2} \Omega_*^2 s^2) + \vec{F}_v \\
\text{Div}(\rho \vec{v}) &= 0.
\end{aligned} \tag{1}$$

ヘロト ヘ部ト ヘヨト ヘヨト

æ

$$\left(\begin{array}{c} P \equiv P(\rho,T) & \text{OPAL} \\ \kappa \equiv \kappa(\rho,T) & \text{OPAL} \\ \varepsilon_* \equiv \varepsilon_*(\rho,T) & \text{NACRE} \end{array}\right)$$

(2)

æ

・ロト ・四ト ・ヨト・ヨト・

M. Rieutord ESTER

The energy flux

$$\vec{F} = -\chi_r \vec{\nabla} T - \frac{\chi_{\text{turb}} T}{\mathcal{R}_M} \vec{\nabla} S$$

The transport of momentum

$$\begin{split} \vec{F}_{v} &= \mu \vec{\mathcal{F}}_{\mu}(\vec{v}) \quad = \quad \mu \left[\Delta \vec{v} + \frac{1}{3} \vec{\nabla} \left(\vec{\nabla} \cdot \vec{v} \right) + 2 \left(\vec{\nabla} \ln \mu \cdot \vec{\nabla} \right) \vec{v} \\ &+ \vec{\nabla} \ln \mu \times (\vec{\nabla} \times \vec{v}) - \frac{2}{3} \left(\vec{\nabla} \cdot \vec{v} \right) \vec{\nabla} \ln \mu \right] \,. \end{split}$$

or any mean-field expression of the Reynolds stress.

イロト イポト イヨト イヨト

On pressure

$$P_s = \frac{2}{3} \frac{\overline{g}}{\overline{\kappa}}$$

• On the velocity field

$$\vec{v} \cdot \vec{n} = 0$$
 and $([\sigma]\vec{n}) \wedge \vec{n} = \vec{0}$

• On temperature (black body radiation)

$$\vec{n}\cdot\vec{\nabla}T+T/L_T=0$$

イロト イポト イヨト イヨト

$$\int_{(V)} r\sin\theta\rho u_{\varphi}\,dV = L$$

or

$$v_{\varphi}(r=R, \theta=\pi/2) = V_{\rm Eq}$$

・ロト ・四ト ・日下・ 日下・

æ

The ESTER code

Project Description

The ambition of this project is to set out a two-dimensional stellar evolution code, which fully takes into account the effects of rotation, at any rate and in a self-consistent way.

The difficult, but important point is that rotating stars are spheroidal and are never in hydrostatic equilibrium. They are pervaded by flows everywhere, even in the stably stratified radiative regions. These flows are essentially convective flows in thermally unstable regions (convection zones) and baroclinic flows in the radiative regions. These latter flows are grosso modo a differential rotation and a meridional circulation, with likely

FIGURE : Freely available on the www

ヘロト ヘ部ト ヘヨト ヘヨト

Gravity darkening of Achernar (α Eri)

・ロト・日本・モート・モー シック

Gravity darkening exponent : $T_{ m eff} \propto g_{ m eff}^{eta}$

FIGURE : Observed values of β and a simple model of Espinosa Lara & Rieutord (2011).

イロト イヨト イヨト イヨ

We have modeled 8 stars of intermediate mass :

Star		M (M _☉)	V _{eq} (km/s)	
Altair	α Aql	1.9	286	
Alderamin	α Cep	1.9	265	
Ras Alhague	lpha Oph	2.2	242	
	δ_A Vel	2.27 & 2.43	150 & 143	
Vega	lpha Lyr	2.4	205	
Regulus	α Leo	4.1	335	
Achernar	α Eri	6.5	339	

æ

< ロ > < 部 > < き > < き > ...

δ Vel seen by Kervella et al. 2013 at VLTI with PIONIER

FIGURE : The orbit of delta vel (Kervella et al. 2013).

・ロト ・ 四ト ・ ヨト ・ ヨト ・

æ

M. Rieutord ESTE

Star	Delta Velorum Aa		Delta Velorum Ab	
	Obs.	Model	Obs.	Model
Mass (M_{\odot})	2.43 ± 0.02	2.43	2.27 ± 0.02	2.27
R_{eq} (R_{\odot})	2.97±0.02	2.95	2.52±0.03	2.52
R_{pol} (R_{\odot})	2.79±0.04	2.77	2.37±0.02	2.36
T_{eq} (K)	9450	9440	9560	9477
T _{pol} (K)	10100	10044	10120	10115
L (L _☉)	67±3	65.2	51±2	48.5
V _{eq} (km/s)	143	143	150	153
P _{eq} (days)		1.045		0.832
P _{pol} (days)		1.084		0.924
X _{env.}		0.70		0.70
$X_{\rm core}/X_{\rm env.}$		0.10		0.30
Z		0.011		0.011

< ロ > < 四 > < 回 > < 回 > < 回 > 、

æ

Inside the stars : internal differential rotation

 $M=30M_{\odot}$ at 98% of critical angular velocity

Espinosa Lara & Rieutord (2013) A&A,552,A35

・ロト ・四ト ・ヨト・ヨト・

Inside the stars : meridional circulation

 $M=5M_{\odot}$ at 70% of critical angular velocity

Espinosa Lara & Rieutord (2013)

э

イロト イヨト イヨト イヨト

Towards evolution HR diagram tracks at constant angular momentum

イロト イヨト イヨト イヨト

Evolution of a $5M_{\odot}$ star at constant angular momentum : heading to the Be state

M. Rieutord

Last developments and road map

- Portability improved, github management
- Documentation strongly improved (93 pages)
- Low mass stellar models under construction

Next :

- Implement nuclear evolution on MS
- Implement thermal evolution (PMS and post-MS)

Points to take away :

ESTER 2D models are ripe to face observational data in

- asteroseismology (coupled with TOP)
- interferometry (coupled with CHARRON)

for early-type stars.

Iow-mass fast rotating stellar model should come soon...

・ロト ・ 同ト ・ ヨト ・ ヨト

- Rieutord, Espinosa Lara & Putigny (2016), J. Comput. Phys. 318, 277
- Espinosa Lara & Rieutord (2013), A&A,552, A35
- ESTER website : http ://ester-project.github.io/ester/

・ロト ・ 同ト ・ ヨト ・ ヨト