Isochrones fitting: model uncertainties and limitations

Pier Giorgio Prada Moroni Dipartimento di Fisica "E. Fermi" – Università di Pisa INFN – Sezione di Pisa Stellar evolution theory is one of the most successful and solid branches of astrophysics

 Fundamental information about stellar populations are inferred by comparing observations with theoretical stellar models The accuracy and precision of the parameters inferred by means of any fitting technique depend on the reliability degree of the adopted stellar models

Stellar models depend on...

- input physics (EOS, radiative and conductive opacity, nuclear reaction cross sections, neutrino emission rates, etc.)
- Macroscopic processes (super-adiabatic convection, overshooting, diffusion, etc.)

initial chemical composition (Y, Z, elements mixture)

Comparing different models

Comparing different models

Radiative opacity

- Radiative energy transfer
- Continuously growing accuracy
- T> 10⁴ K: OPAL (Iglesias & Rogers 1995); Opacity Project (Badnell et al. 2005); OPAS (Blancard et al. 2012); Los Alamos (Colgan et al. 2016)
- T < 10⁴ k: Wichita group (Ferguson et al. 2005)

OPAL-OP radiative opacities

Valle et al. 2013 (see also Badnell et al. 2005)

Equation of state

P=P(T, ρ); adiabatic gradient, c_p

OPAL (Rogers & Nayfonov 2002); FreeEOS (Irwin 2008); Saumon et al. 1995

Different EOSs

PISA models

¹⁴N(p,γ)¹⁵O

- The slowest process in the CNO cycle
- Age determination of globular clusters (*Degl'Innocenti et al. 2004, Imbriani et al. 2004*)
- Solar neutrino spectrum (Bahcall & Pinsonneault 2003; Degl'Innocenti et al. 2004; Vinyoles et al. 2017)

¹⁴N(p,γ)¹⁵O

- LUNA collaboration (Formicola et al. 2003, Imbriani et al. 2005, Marta et al. 2008, 2011) extended the measurements to the low-energy regime
- The rate is nearly a factor of 2 lower than the NACRE value at low temperatures
- Increase of the age estimate of globular clusters of about 0.7-0.9 Gyr (*Degl'Innocenti et al. 2004; Imbriani et al. 2004; Weiss et al. 2005; Pietrinferni et al. 2010*)

¹⁴N(p,γ)¹⁵O

Imbriani et al. 2004

Fig. 2. The absolute V-band magnitude of the MS TO as a function of age for theoretical isochrones with Z = 0.0003 and Z = 0.002, as derived from stellar models computed with either the LUNA or the NACRE ¹⁴N(p, γ)¹⁵O reaction rate.

Pietrinferni et al. 2010

p(p,e⁺v)D

- It drives the efficiency of p-p chain
- Marcucci et al. 2013: updated rate accurate at the level of few per thousand (but see also Acharya et al. 2016)
- Tognelli et al. 2015: release for the calculation of the updated p-p rate at the link:

http://astro.df.unipi.it/stellar-models/pprate/

Cumulative uncertainty

M=0.9 M_o Z=0.006 Y=0.26 α_{ml} =1.9

Table 1. Physical inputs perturbed in the calculations and their assumed uncertainty.

parameter	description	uncertainty
p_1	1 H(p,ve ⁺) ² H reaction rate	3%
p_2	$^{14}N(p,\gamma)^{15}O$ reaction rate	10%
p_3	radiative opacity $k_{\rm r}$	5%
p_4	microscopic diffusion velocities	15%
p_5	triple- α reaction rate	20%
p_6	neutrino emission rate	4%
p_7	conductive opacity $k_{\rm c}$	5%

Valle et al. 2013

 Systematic and symultaneous variation of the main input physics

 Perturbed stellar models (*Chaboyer et al. 1992, 1998, Valle et al. 2013 a,b*)

Table 2. Total range of variation and range half-width of the theoretical predictions for the selected quantities for our reference case, i.e. $M = 0.90 M_{\odot}$ with Z = 0.006 and Y = 0.26, due to input physics uncertainties.

Quantity	Variation range	Range half-width
$\log L_{\rm BTO}$	[0.334–0.376] dex	0.021 dex
t _H	[9.83–11.26] Gyr	0.72 Gyr
$\log L_{\rm tip}$	[3.38–3.44] dex	0.03 dex
$M_{\rm c}^{\rm He}$	$[0.4796-0.4879] M_{\odot}$	$0.0042~M_{\odot}$
$\log L_{\rm HB}$	[1.52–1.61] dex	0.045 dex

L_{TO} uncertainty contributions: • k_r, first •¹⁴N+p, second

 σ_{kr} from 5% to 1% to produce the same contribution of the second

t_H uncertainty contributions:
k_r, first
Diffusion velocities, second

 σ_{kr} from 5% to 0.56% to produce the same contribution of the second

12 Gyr isochrone

Table 8. Range half-width of variation in theoretical predictions of selected quantities for our reference isochrone of 12 Gyr, with Z = 0.006 and Y = 0.26, due to input physics uncertainties.

Fig. 10. HR diagram showing the error stripe due to the variation of the physical inputs for a 12.0 Gyr isochrone (zoom of the TO region).

Isochrones 8-14 Gyr

For a given TO luminosity, the inferred age varies in a range of $\approx +/-0.375$ Gyr

One of the major and long-standing weaknesses in stellar models

Stellar models are not yet able to accurately predict:

- the extension of convective regions
- the temperature gradient

Common approach in stellar codes is:

- To determine the Schwarzschild border
- To allow for an overshooting region whose extension depends on a free parameter proportional to the pressure scale height at the Schwarzschild border (Saslaw & Schwarzschil 1965, Shaviv & Salpeter 1973; Maeder 1975; Renzini 1987; etc.)

PISA models

Affects the age
 estimate of clusters
 with TO mass >1.2 M_o

 Increasing the overshooting leads to older ages

Castellani, Degl'Innocenti, Prada Moroni 2001

Hyades

Kopytova et al. 2016

PISA models

• overshooting prescription for 1.1 $M_o < M < 1.5 M_o$ affects the morphology of isochrones of ≈ 5 Gyr

Mimicking different ages

Pietrinferni et al. 2004

Overshooting calibration

•CMD of stellar clusters (Maeder & Mermilliod 1981; Stothers 1991; Schaller et al. 1992;

•Eclipsing binaries (Andersen et al. 1990; Ribas et al. 2000; Claret 2007; Prada Moroni et al. 2012; Stancliffe et al. 2015; Claret & Torres 2016, 2018; Valle et al. 2017)

•Asteroseimology (Deheuvels et al. 2010, 2015; Silva Aguirre et al. 2013)

Overshooting calibration with eclipsing binaries

Valle et al. 2016, showed that when both members are still in the MS phase:

 errors of 1% in M and 0.5% in R are enough to hamper the overshooting calibration

•The random uncertainty is very large

•The systematic biases suggest caution on the possibility of calibrating overshooting even in the case of a rich sample of binary systems

EB TZ Fornacis

Gallenne et al. 2016 provided very precise mass determination: 0.001 M_o

Table 1. Observational constraints for the TZ Fornacis binary system from Gallenne et al. (2016), but with stellar radii from Andersen (1991).

	primary	secondary
$M\left(M_{\odot} ight)$	2.057 ± 0.001	1.958 ± 0.001
$R(R_{\odot})$	8.32 ± 0.12	3.96 ± 0.09
$T_{\rm eff}$ (K)	4930 ± 30	6650 ± 200
[Fe/H]	0.02 ± 0.05	-0.05 ± 0.1

Primary star in the central He-burning phase, secondary in the sub-giant branch or earlier

EB TZ Fornacis

FRANEC

Valle et al. 2017

EB TZ Fornacis

Valle et al. 2017 :

- 1 class
- Age: 1.11^{+0.05}-0.03 Gyr
- Y=0.262 ± 0.01
- β= 0.15 ± 0.01

2 class

- Age: 1.16^{+0.03}-0.02 Gyr
- Y=0.263 ± 0.001
- $\beta = 0.25^{+0.005}_{-0.01}$

(see also Andersen et al. 1991; Pols et al. 1997; Stancliffe et al. 2015; Higl & Weiss 2017; Claret & Torres 2018)

EB TZ Fornacis: effect of mass uncertainty

 $\sigma(M_1) = \sigma(M_2) = 0.05\%$ (Galenne et al 2016)

 $\sigma(M_1) = 3\%$, $\sigma(M_2) = 1.5\%$ (Andersen 1991)

EB TZ Fornacis: effect of helium uncertainty ΔY/ΔZ

 $\Delta Y/\Delta Z$ variable in the range 1-3

 $\Delta Y/\Delta Z = 2$ fixed

- The calibration of stellar parameters from binary stars is affected by the priors adopted in the fitting procedure
- The overshooting parameter calibrated with observations depends on:
- The overshooting scheme adopted in the code
- The input physics/parameters adopted in the code

One of the major and long-standing weaknesses in stellar models

Stellar models are not yet able to accurately predict:

- the extension of convective regions
- the temperature gradient

 In stellar codes is usually adopted the mixing-length theory (*Bierman 1932; Böhm-Vitense 1958*) to compute the temperature gradient in the outer convective regions

- T_{eff} of stars with a convective envelope can not be firmly predicted, because it depends on the free parameter α

 $0.7 M_o < M < 1.4 M_o$: maximum impact of mixing-length in MS

Pisa models

See also discussion in Chaboyer et al. 1998; Castellani et al. 1999; Lebreton et al. 2014

Solar calibration of α

1 M_o that at the age of the Sun has L_o, R_o and (Z/X)_o

One should remember that the solar calibrated α :

- is not necessarily suitable for stars of different masses and/or in different evolutionary phases (Ludwig et al. 1999; Freytag et al. 1999; Trampedach et al. 2014; Magic et al. 2015; Salaris & Cassisi 2015)
- depends on the input physics and parameters adopted in the stellar code

Solar calibration of α: different outer boundary conditions

Tognelli, Prada Moroni, Degl'Innocenti 2011

BH05: Brott & Hauschildt 2005

K66: Krishna Swamy 1966

CK03: Castelli & Kurucz 2003

See e.g. Montalban et al. 2001, 2004; Salaris et al. 2002; Tognelli et al. 2011; Tanner et al. 2014; Salaris & Cassisi 2015

Solar calibration of α: different outer boundary conditions

Solar calibrated models that adopt different input physics and/or boundary conditions provide different T_{eff} for masses and / or evolutionary phases different from the Sun (*Salaris et al. 2002*)

Solar calibration of α: different outer boundary conditions

Tognelli, Prada Moroni, Degl'Innocenti 2018

Thanks

Pre-MS tracks

Initial chemical abundance

 The initial Y, Z, and element mixture required in stellar model computations rely on some assumption

$$Z = \frac{(1 - Y_P)(Z/X)_{\odot}}{10^{-[Fe/H]} + (1 + \Delta Y/\Delta Z)(Z/X)_{\odot}}$$
$$Y = Z\frac{\Delta Y}{\Delta Z} + Y_P$$

• Not negligible uncertainty

 How do these uncertainties propagate into model predictions?

Uncertainty in initial chemical composition

Reference value:

Y=0.274, Z=0.01291, [Fe/H]=0

Variation range: • Δ [Fe/H]= ±0.05

• $\Delta Y_{p} = \pm 0.008$ (Cyburt 2004)

• $\Delta Y/\Delta Z = 2 \pm 1$ (Casagrande 2007, Gennaro et al. 2010)

• Δ (Z/X)_{sun} ≈ +25/-10 % (Tognelli et al. 2012)

quantity	value	Y	Ζ
Y _p	0.2485 + 0.008	0.2751	0.01289
	0.2485 — 0.008	0.2735	0.01292
$\Delta Y / \Delta Z$	2+1	0.2866	0.01268
	2 - 1	0.2616	0.01313
(Z/X) ₀	0.0181 + 25%	0.2803	0.01592
	0.0181 - 10%	0.2718	0.01167
[Fe/H]	+0.0 + 0.05	0.2773	0.01439
	+0.0 - 0.05	0.2716	0.01156

Cumulative error due to the uncertainty in initial chemical composition

Tognelli (2013)

Cumulative error due to the uncertainty in initial chemical composition

Tognelli (2013)

Helium abundance

Fig. 13. Comparison between 12 Gyr old, Z=0.002, isochrones computed for various assumptions about the initial He abundance. The inset shows the trend of the average RGB bump brightness as a function of the initial He abundance for a $0.8M_{\odot}$ model.

Cassisi (2013)

Comparing different models

Comparing different models

Code:	EOS	Radiative Opacity	Boundary Conditions	Convection	Y, Z	overshooting	diffusion
PROSECCO	OPAL06 SCVH95	OPAL F05 (AS09)	non-grey, $\tau_{bc} = 10$ BT-Settl AHF11 CK03 ($T_{eff} \ge 10^4$ K)	MLT $\alpha_{\rm ML}$ =2.00	Y=0.274, Z= 0.013	$\beta_{ov} = 0.25$	Thoul et al. (1994)
BASTI	FreeEOS	OPAL F05 (C11)	Vernazza et al. (1981) ($M > 0.45 \text{ M}_{\odot}$) BT-Settl AHF11 (VLM), $\tau_{bc} = 100$	$\begin{array}{ll} \text{Merc} \ & \text{Merc} \\ Me$		$\beta_{ov} = 0.20$	No
BHAC15	SCVH95	OPAL AF94 (AS09+C11)	non-grey, $\tau_{\rm bc} = 100$ BT-Settl AHF12	MLT $\alpha_{ML}=1.6$	Y=0.280, Z= 0.015	No	No
MIST	OPAL06 SCVH95	OPAL F05 (AS09)	non-grey, $\tau_{\rm bc} = 100$ ATLAS12	MLT $\alpha_{\rm ML}$ =1.82	Y=0.270, Z= 0.014	diffusive	Thoul et al. (1994)
PARSEC	FreeEOS	OPAL M09 (C11)	non-grey, $\tau_{bc} = 2/3$ BT-Settl AHF11	MLT $\alpha_{ML}=1.7$	Y=0.274, Z= 0.013	$\beta_{ov} \approx 0.25$	Thoul et al. (1994)

EB TZ Fornacis: effect of mass uncertainty

- Gallenne et al. 2016: $\sigma(M_1) = \sigma(M_1) = 0.001 M_0$ (0.05%)
- Andersen 1991: σ(M₁)= 0.06 M_o (3%), σ(M₂)=0.03 M_o (1.5%)
- $\sigma(M) \approx 1\%$ are common
- What's the effect on overshooting calibration of increasing the mass uncertainty?

Varying Z (Δ [Fe/H]= ± 0.1), keeping fixed Y

PISA models

Solar element mixture

•In the last 25 years it has been revised several times

•GN93, Grevesse & Noels 1993; GS98, Grevesse & Sauval 1998; AGS05, Asplund et al. 2005; Caff08, Caffau et al. 2008; AGSS09, Asplund et al. 2009; Lod09, Lodders et al. 2009

	GN93	GN98	AGS05	Caff08	AGSS09	Lod09
$(Z/X)_{\odot}$	0.0245	0.0229	0.0165	0.0209	0.0181	0.0191

From GN93 to AGSS09 a decrease of:
•34% of ¹⁶O abundance
•25% of (Z/X)_o

Lebreton et al. 2009

Varying the element mixture

Table 4

Main Characteristics for the Different SSMs with the Correspondent Model Errors and the Values for the Observational Values (when Available) and Their Error

Qnt.	B16-GS98	B16-AGSS09met	Solar
Y _S	0.2426 ± 0.0059	0.2317 ± 0.0059	0.2485 ± 0.0035
$R_{\rm CZ}/R_{\odot}$	0.7116 ± 0.0048	0.7223 ± 0.0053	0.713 ± 0.001
$\langle \delta c/c angle$	$0.0005\substack{+0.0006\\-0.0002}$	0.0021 ± 0.001	$0^{\mathbf{a}}$
α_{MLT}	2.18 ± 0.05	2.11 ± 0.05	
Y _{ini}	0.2718 ± 0.0056	0.2613 ± 0.0055	
$Z_{\rm ini}$	0.0187 ± 0.0013	0.0149 ± 0.0009	
$Z_{\rm S}$	0.0170 ± 0.0012	0.0134 ± 0.0008	
$Y_{\rm C}$	0.6328 ± 0.0053	0.6217 ± 0.0062	
Z _C	0.0200 ± 0.0014	0.0159 ± 0.0010	

Effect on the standard solar model

From GS98 to AGSS09, a decrease in:

Z_{ini}:20 %

Y_{ini}: 4 %

 \bullet

 $\Delta Y/\Delta Z$ from 1.3 to 0.845

Barcelona SSM (Vinyoles et al. 2017)

Varying the element mixture

Varying the element mixture

PISA models

Initial He abundance uncertainty

$$Y = Y_p + \frac{\Delta Y}{\Delta Z} Z$$

- Y_p well constrained: 0.2487 ± 0.002 Cyburt et al. 2008 (WMAP);
 0.2463 ± 0.003 Coc et al. 2013 (Planck)
- ΔY/ΔZ largely uncertain: 2 ± 1 (Pagel & Portinari 1998, Casagrande et al. 2007; Gennaro et al. 2010)

Varying Y ($\Delta Y/\Delta Z \pm 1$), keeping fixed Z

PISA models

Different EOSs

Tognelli, Prada Moroni, Degl'Innocenti 2018

Castellani et al. 1999